导航中医药

 找回密码
 注册
楼主: 千秋雪
打印 上一主题 下一主题

漫谈先天之精

[复制链接]
61
发表于 2018-12-31 21:45:12 | 只看该作者
双螺旋的发现
20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。 [3]
20世纪50年代,DNA双螺旋结构被阐明,揭开了生命科学的新篇章,开创了科学技术的新时代。随后,遗传的分子机理――DNA复制、遗传密码、遗传信息传递的中心法则、作为遗传的基本单位和细胞工程蓝图的基因以及基因表达的调控相继被认识。至此,人们已完全认识到掌握所有生物命运的东西就是DNA和它所包含的基因,生物的进化过程和生命过程的不同,就是因为DNA和基因运作轨迹不同所致。
1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。
沃森
沃森
沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。
在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定谔的《生命是什么?--活细胞的物理面貌》这本进化论的理论基础书籍,促使他去“发现基因的秘密”。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。
沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。
克里克
克里克
克里克(1916-2004)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了埃尔温·薛定谔《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。
当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。
他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。
1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。
有一天,沃森又到国王学院威尔金斯实验室,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。
克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查伽夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。
他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。
有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查伽夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。
经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。
下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。 [3]
62
发表于 2018-12-31 21:46:32 | 只看该作者
基因工程
1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等技术。
1972年,美国科学家保罗.伯格首次成功地重组了世界上第一批DNA分子,标志着DNA重组技术――基因工程作为现代生物工程的基础,成为现代生物技术和生命科学的基础与核心。
到了20世纪70年代中后期,由于出现了工程菌以及实现DNA重组和后处理都有工程化的性质,基因工程或遗传工程作为DNA重组技术的代名词被广泛使用。
到20世纪末,DNA重组技术最大的应用领域在医药方面,包括活性多肽、蛋白质和疫苗的生产,疾病发生机理、诊断和治疗,新基因的分离以及环境监测与净化。
理化性质编辑
第一张DNA照片
第一张DNA照片
DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即:
腺嘌呤脱氧核苷酸(dAMP )、胸腺嘧啶脱氧核苷酸(dTMP )、胞嘧啶脱氧核苷酸(dCMP )、鸟嘌呤脱氧核苷酸(dGMP )。
脱氧核糖核酸是一种由核苷酸重复排列组成的长链聚合物,宽度约22到24埃(2.2到2.4纳米),每一个核苷酸单位则大约长3.3埃(0.33纳米)。在整个脱氧核糖核酸聚合物中,可能含有数百万个相连的核苷酸。例如人类细胞中最大的1号染色体中,就有2亿2千万个碱基对。通常在生物体内,脱氧核糖核酸并非单一分子,而是形成两条互相配对并紧密结合,且如藤蔓般地缠绕成双螺旋结构的分子。每个核苷酸分子的其中一部分会相互连结,组成长链骨架;另一部分称为碱基,可使成对的两条脱氧核糖核酸相互结合。所谓核苷酸,是指一个核苷加上一个或多个磷酸基团,核苷则是指一个碱基加上一个糖类分子。
脱氧核糖核酸骨架是由磷酸与糖类基团交互排列而成。组成脱氧核糖核酸的糖类分子为环状的2-脱氧核糖,属于五碳糖的一种。磷酸基团上的两个氧原子分别接在五碳糖的3号及5号碳原子上,形成磷酸双酯键。这种两侧不对称的共价键位置,使每一条脱氧核糖核酸长链皆具方向性。双螺旋中的两股核苷酸互以相反方向排列,这种排列方式称为反平行。脱氧核糖核酸链上互不对称的两末端一边叫做5'端,另一边则称3'端。脱氧核糖核酸与RNA最主要的差异之一,在于组成糖分子的不同,DNA为2-脱氧核糖,RNA则为核糖。
而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。
在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的人体细胞中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。
DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起DNA分子变性,即DNA双链碱基间的氢键断裂,双螺旋结构解开—也称为DNA的解螺旋。
分子结构
DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查伽夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。
一级结构
是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3',5'-磷酸二酯键彼此连接起来的线形多聚体,以及其基本单位-脱氧核糖核苷酸的排列顺序。
一级结构
一级结构
每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查伽夫规则(即碱基互补配对原则)。
二级结构
二级结构
二级结构
是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于病毒,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在。
三级结构
是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间
三级结构
三级结构
结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。
四级结构
核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。
拓扑结构
也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
其他结构
原核细胞的遗传物质是一个长DNA分子,但是原核细胞没有真正的细胞核。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。
63
发表于 2018-12-31 22:13:25 | 只看该作者
杏林童子 发表于 2018-12-26 17:24
《黄帝内经》中虽没有“先天之精”的提法,但却已有这方面的论述,如《黄帝内经·灵枢·本神》篇说:“故生 ...

如《黄帝内经·灵枢·本神》篇说:“故生之来谓之精。”《灵枢·决气》篇也说:“两神相搏(抟),合而成形,常先身生,是谓精。”这两处所说的精,应是指的以后东汉王充所说的元精,王充《论衡·超奇》:“天禀元气,人受元精。”
   王充的元精后来被引人医学,实质就是指的先天之精,它禀受于父母,是构成胚胎的原始物质,也是人体功能活动的源泉,故《灵枢·经脉》又说:“人始生,先成精”。


古人通过对“男女媾精,胎孕乃成”的观察和体验,认识到男女生殖之精的结合能产生一个新的生命个体。《灵枢·天年》认为人之始生,“以母为基,以父为循”。可见,父母遗传的生命物质是与生俱来的精,谓之先天之精。

------------------------------------------------------------------------------------------------------
我把杏林先生这段话。划分成几段,便于大家阅读。好像论坛里眼花的朋友多了。呵呵。


我认为,杏林先生对“先天之精”的论述,是正论,既符合内经经义,也符合现代中医对“先天之精”的定义。
前面讨论这个问题时,大家比较一致的意见,是认为应该以《中基》教材里先天之精定义为目标来讨论。我觉得杏林先生的这段论述,比《中基》教材的细致且深入。
不知道大家意见如何?
64
发表于 2018-12-31 22:35:42 | 只看该作者
    潜意识的精子、卵子、受精卵、胚胎……,在《内经》的不同章节里断章取义找根据,是一种错误的研究方法。
65
发表于 2018-12-31 22:46:02 | 只看该作者
      潜意识的精子、卵子、受精卵、胚胎……,在《内经》的不同章节里断章取义找根据,是一种错误的研究方法。
       或者预先设定精是化学物质,再在西方科学里找生物化学的根据,而摒弃物质的哲学属性、物理学属性、日常生活中的属性,也是一种错误的研究方法。
     文章中的概念,不能脱离原文去研究,要根据在这个段落中的含义,在整个文章中的含义去体会、研究。
例如:中医的心,不能脱离阴阳五行去研究;西医的心脏不能脱离解剖学与生理学去研究。
66
发表于 2018-12-31 23:28:35 | 只看该作者
         语文课要求写段落大意,中心思想,现在中医大学的教授们,不知道什么是段落大意,摒弃一篇文章的中心思想,断章取义,把互不相关章节中断章取义的句子拼凑出自己想要说的话,这种极其错误的学习方法,必然导出错误的结论。

       中医基础理论中的气一元论,气是构成宇宙的微细物质,精还是基本物质,不能自圆其说。
67
发表于 2018-12-31 23:35:47 | 只看该作者
本帖最后由 llyyjj 于 2019-1-1 00:06 编辑
中西医融合观 发表于 2018-12-27 15:19
就事论事,“两精相搏谓之神”,“两神相搏,合而成形,常先身生,是谓精”?精与神究竟是什么关系? ...

这么简单的精与神你理解不了?真没办法。

精,父母的生殖之精。神,生命体。定语省略了,古汉语里常用的。
慢慢理解吧。
68
发表于 2019-1-1 00:02:54 | 只看该作者
有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了
69
发表于 2019-1-1 00:10:38 | 只看该作者
就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来
70
发表于 2019-1-1 00:15:06 | 只看该作者
dffaaoo 发表于 2019-1-1 00:10
就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来

但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|导航中医药 ( 官方QQ群:110873141 )

GMT+8, 2024-11-24 19:51 , Processed in 0.052735 second(s), 16 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表