|
3楼
楼主 |
发表于 2018-10-21 14:51:36
|
只看该作者
补充
1、 快的问题。快慢本身也是相对的。快也只是比较快,不可能快到底。气象上我们国内即使在解放后,有许多工作实在还是太慢的,气候学就是如此,闹来闹去(1955-1958)最后拆掉摊子以为意义不大,出不了东西。其实东西完全可以出,只是不够革命化,讲得多,干得少,"清谈误国",最后实际上是解散。到1964年要搞湍流扩散(与近地面气候、物理有关)仍又另起炉灶。云雾物理呢,到1962-63年已有人在叫,"老的拆了摊,新的没建立"指云物理没建立。幸而我们有三本成果总结在1963年印出,用事实来表明不是没有建立,而是建立起来了。这是背景。
快的条件是什么。快还是长远来说也要看来快,不只当时一时。这就不是仓促抓一些就搞。因此第一要有革命的要求(从略)6,第二要抓对业务方向。看不出问题,看不对问题,稀里胡涂搞上一大摊,也不能真正快。一时热闹,过后谁也不看,气象上Leipzig学派就是如此,抓了一个波动的分析方法,其实走上形式主义道路。那些是新的,有意义。那些是旧的,没意义,先得搞清。自己看不出科学意义、科学方向,空言有前途,装的很大,大家不信,还是不顶事。
快不能快到只顾一面,譬如说理论总结很重要,为了贪快,嫌它费时费事,不去搞,最后快不成。我国天气学已有这问题。要快,就事论事,总结一大堆,如何提高考虑不够,结合动力气象不够,现在进一步提高就难,还得补课。也不能绕过主要关键,像人工降水验证是重要关键,作为科学试验,绕了过去,结果三年来问题总解决不了也谈不到快了。现在强�"不去纠缠在这上面"以后也不会快。快也不能不要三严7,搞得仪器观测不过关(必要的精度不能保证),计算的结果错误百出,就快不了。我们大气透明度仪器至今没过关,就得不到资料,想快结果快不了(当时仪器太多,不严),因此宁可简单而严格的仪器,不搞复杂而不严的仪器。快,也不能挤掉深入分析的工作,有人一味想赶进度,交差,总结时匆匆赶完,以便搞完后专门学习,而不是为了更快提高研究水平,边干边学,钻研问题,深入总结,结果反而慢了下来。雷达气象组1963-64有一段时间就犯了这毛病,工作水平的提高就慢了下来。最后,也得干部的思想,业务水平跟得上,不然要起反感。我往往这方面注意不够,没能从大家的角度来考虑有些什么可能的思想障碍及具体困难,如何妥帖安排,结果快不了。1962年泰山观测也有这情况,费了大力气,质量提高慢,因为为何观测有的人不了解或对出差根本不愿意……。
"严"与"敢"的问题。以南岳云滴分布出现第二极大(一般云滴分布是很小的云滴少,大一些的最多,之后愈大的愈少,只有一个高峰。南岳测到过几次却有两个高峰),文献上少有这资料,有的也不大谈,出现条件,规律更不谈。这有特殊性,我们认为重要。给苏联著名云雾物理专家Кирюхин(列宁格勒大学讲师)看,一看就说观测误差测的滴数数目不够,后来算给他看证明滴数是够的,他又推说次数不多,与许多许多次一平均就平均掉了。我们说可能是特殊性,他说可能云沿坡运动时特殊情况,没普遍意义,自然云雾中不会有这现象,是高山观测的毛病。说来说去就是没有敢正视新事实。我们第一肯定不是观测错误,因为测云滴的观测误差是已知的,可以分析也分析过的。相邻滴的大小各檔之间也进行了平滑更减少了某些误差。第二,我们认为从来也没有人证明过云滴分布中只能出现一个极大,不能出现第二个极大,实际上已有少数数据中出现过,只是人们不注意。第三,我们认为重要,因为过去研究云滴分布,绝大多数取许多次的平均分布来讨论,不谈某次某块云中的分布。我认为这是过去云雾物理观测的初期,观测方法差,观测数据少,只好用平均的,并且连平均情况也不清楚,所以先要平均的,即这类云与那类云之间的差别,还谈不到同类云这一块与那一块之间的差别。现在不一样。平均情况已了解过了,已不是这阶段了,应该进一步认识这块云与那块云之间的不同,应该认识云的特殊性,尤其是中国实测云雾的特殊性。所以我肯定这现象不但是可靠的并且是重要的。这正像锋面研究一样,平均的气温分布总是愈向上愈冷,非常均匀,但有锋面(就是冷暖两空气团之间的界限)时气温向上变冷的速率就不均匀,甚至有时向上气温增加(冷空气在下,暖空气在上),这是特殊情况,对一年一月平均情况来说,这是个别情况,但这个个别极其重要,大气中低压发展,寒潮都与它有关,发现并肯定它有存在和作用是20世纪气象界的第一件大事。现在谁都知道平均大气情况的重要,而锋面这个个别存在尤其重要。所以我感到云滴问题上很有把握,气象发展就是这样的。应该敢于接受新出现的现象承认它而不是抹杀它。三严又如何呢。一方面肯定时要有根据,实际上的、理论上的,起码证明它不是不可能(≠一定可能),一方面还继续观测、分析、研究。证明它的存在,并进一步证明它出现的条件和规律。这就不违反三严。我们1960年发现云滴分布第二极大(不过几次)。1961年再观测,进一步证明它的存在,并且次数不少。到1962年又测,发现它不但存在并且竟与锋面有密切关系,平时很少出现。至此,不但再无容怀疑,并且发现有一定的规律了。这规律联系61-62年云滴起伏生长理论来看又是完全可能的,合理的(锋面云在南岳春季里多浓积云,雷雨云,并且云中起伏大,湍流强,云滴该长大一些并出现第二极大)。所以敢想是科学的设想,不是灵机一动"人家云滴分布只有第一极大,也许我们可能还有第二极大",没有观测,没有理论根据,就瞎找证明这种实用主义作法。尤其不同的是,敢想是承认事物有飞跃、突变,事物有特殊性。不承认这二点,看到可靠的新的突变、特殊性,就赶忙抹杀否定,借口三严不够,那就成了保守。搞了半天,不知道自己搞什么。锋面学说1919年就提出,英美到三十年代都没接受,一直用老法子作预报,也是一例。我们也有,天气预报已到数值预报阶段,我们用了,大家(天气业务工作上,理论工作上)重视还是不够的。
再说求全问题,有的是求全,有的是繁琐。以气象上气团分类来说,气象上认识空气在几百公里内往往性质相似(冷暖,干湿,稳定性……)认识了气团,很好。认识气团对预报有帮助,但不能把预报只靠气团分类来解决。气团只是谈空气静止性质,不谈运动。因此不能根本解决预报问题。然而1935-1950这15年间中外学者迷信于气团,研究了又研究,希望把天气繋于气团。但实际上同一气团中天气又会有不同,为了企图解决这问题,于是把分类再划细,搞出了许许多多气团,用也没法用,也不灵,解释不了天气。看来研究愈来愈热闹,愈全面,愈详细,其实走上了岔路,想靠气团的分类学解决天气发生发展问题,再全也白费,只能是繁琐。
1960年以后,气象局抓天气分型,是好的,过去作得不够,还可发挥,也发挥了作用。但后来竟搞到只此一道,罢斥百家,指望靠天气环流分型来解决天气形势预报问题,用了与美国Krick等三、四十年代乃至19世纪Abercrouby相类似的方法。而分类不得不愈来愈繁琐,细无可细,烦无可烦。终于预报员也怀疑了。这也可以说是一个例子。毛病在于想用低级的方法解决高级的问题(不同质的问题),结果没抓住本质,不能不靠分类学,形态学。(现略有改进)
另一方面,研究譬如吃东西,一个没有东西吃,有一条不大的鱼,也得连头带尾吃掉,啃鱼头也干。如果菜很好,就只能挑更好的吃,不然吃不了。更不会抓了一块鸡肋、鸡头、鸡脚爪啃了又啃,要吃全了才算。打仗还不是一样。解放军追击敌人有时就不求全,过长江后追敌人,沿途好多零星部队当时就顾不到打。气象上也是如此"歼灭有生力量"为主,即把问题先打开局面,搞出一个方向来,主要问题解决了即可,还有许多工作可以别人接下去搞,或者以后慢慢搞。叶先生和我的洋老师Rossby看来懂得这一点。他先搞天气分析,搞湍流,搞气团分析,搞西风波,搞急流的形成和崩溃,最后搞大气化学。以气团分析为例,他用了海洋学上的水团分析方法搞气团分析,但当别人发展到繁琐地以分类解决天气发展弄得分类本身也分不下去的时候,他早不搞了。而搞西风波时,他首先用地面图来说明了高空西风波的存在又以极简单的数学证明形成这种波的原因,结果,开阔了气象学的一个新的阶段之后,一系列的问题引了出来,已吸引了一大批人来全面开展工作。但这时候他转到大气化学,开阔了大气化学与大气环流相结合的一个新方向。这就是一个好例子。多少人在数学上,天气分析上,搞西风波等等都比他好,但他们从来不敢开创,搞不出新方向来,如美国Haurwitz, Pettersson[等]人,即使深入了一步,结果贡献仍远不如Rossby,这是近代气象学上公认的,但虽然不求全,每一种工作还是完全的,站得住。不是粗制滥造的。尽可能的作得正确。当然,科学上也有这种事例,结论基本上是对的,以后深入之后机制与过去了解不同,或者原来证明的方法以后用别的方法才正确地证明了它,这也是有的。而像苏联Кибeль院士在气象上搞了许多理论,会算肯干,想办法,作了很多工作,甚至自己作了很重要的事(天气发展的第一近似第二近似计算)比美国Charney还要早。终于天气实践没有,结果这工作仍没起应有的革命性作用。可以说是有三严而无三敢的典型,流于繁琐。最后到Charney的工作发表后,还是照Charney的道路走。这就说不到多快好省。
至于我们所说的当前,是抓住当时能搞的,有用的,又是本质上重要的,不是只顾眼前。但如果当时有无问题还迫切需要解决,那就要先解决有无问题,所举的1951年的例子的背景是,当时预报上几乎一点没有办法。过去对中国北部西部的天气又缺少研究(旧中国对长江流域天气还注意一些)。高空图很少,有了还不知如何用。凭什么作好预报,先得抓住几个影响重大的天气及天气系统的要点,解决有无问题。虽然如此,我们仍留一部力量研究(我自己作不要求预报员作)西藏高原影响这种概括性一些、长远一些的理论问题。不是不管了而有个比例。影响天气人工降雨,起初是比较只顾眼前的作法,实际上眼前就保不住是否人工降了水闹不清。人工降水技术方法已会,有无问题要解决,下一步的"当前"就是要抓搞验证,云的实际情况等等,进一步提高。但大气物理专顾长远的人工控制影响也不行,专做人工降水"生产"工作也不行。除了考虑长远需要的研究并参加目前的人工降水工作外,我们现在还考虑更与当前有关的预报问题,使大气物理与预报结合,服务。这就更好。气象上一般说来长远一些的研究似乎都可以对当前的工作多少结合一些。而能结合当然更好。我们搞雷雨云就有这意思。
2、特殊性问题。气象学是带有很大地方性的科学,而研究的总首先是本国的天气,地方性明显。过去解放前或解放初开口就说中国天气与美国相像,有的是我国自己情况不了解,要借用美国研究结果,有的是进行理论研究变化,想强调它的一致性。但是实际上没有一个客观天气研究,一个普通的天气结论不是同当地的特殊性联系的。挪威学派1920年前后抓住锋面气旋(锋面上的低气压)提出了锋面学说,建立了挪威学派,因为在挪威那边气旋特别清楚,特别多,发育得完全。那几年西风比较强,容易有锋面气旋。1933/34年也是如此,甚至出现"快跑气旋"(移动特快)。到1935-36年德国人大研究大型过程,强调"东方型"。47-48年Rossby研究阻塞流型,因为在那几年欧洲暖高压很强,阻塞明显,提出的又另是一类天气。再是美国1940年前后大大研究急流,不但当年西风强,并且美洲急流也强(仅次于东亚)。所以这些研究及提出的相应的理论,都是有地域性甚至有当时流行天气的影响的。我们在中国必然也要注意到本地的特殊天气,不能贸然搬用,搬用必然解决不了问题。我国西南的预报员不会搞出锋面学说的气旋理论,因为这类气旋在那边很少。在那边只会搞出西南准静止锋的研究,如1947年张丙辰同志所注意的。搬了挪威学派的锋面气旋模型来也用不上。当然一般的气象原理能结合中国天气实际来用也是好的。可惜解放前不多。天气上尤其少。吕炯的"极面(锋面)学说与长江下游之风暴"与刘匡南,程纯枢讨论中国高空低槽演变与锋系特征的文章可算是与众不同的(后来叶笃正同志研究西藏高原影响是更出色的更有系统的)。
现在的情况是,这毛病还有,研究危险天气中小尺度系统一味模仿藤田(Fujita,留美日本气象工作者,中小尺度系统研究权威),一味画雷暴高压(次生的,后期的,少预报价值及理论意义),不谈生成机理。研究湍流扩散的,一味崇拜Колмогоров理论,只谈局地各向同性问题(局限性很大,扩散上基本是没能用上),如法炮制,不想在我们这边测一测湍流扩散,其实即使先找一找经验规律再上升,或者根据我们对湍流扩散的要求,从扩散本身下手,另辟我们的途径更好,这是现在正在开展的工作,已具体作了三种可能的途径,或三个阶段的考虑,已讨论而未开始作。但洋迷信还很不少。讲得再远一些。我们的气象业务中日常观测的规范还是洋的,观测报告的电码也是洋的。欧洲人根据欧洲天气,为欧洲天气的预报制订出要观测什么,报告什么,我们至今照抄,岂非怪事。这套观测电码,最后一次大改还是挪威派盛行时的事情,至今已有三十年了。什么报能见度等等,都是为了气团分析,实际上早已不用。当然航空上还要能见度,这是另一回事。作为天气分析方法,我们的天气分析有我们的特点,为何不有计划地准备一下,调研一下,进行一下改革呢?实际上美洲低纬等地已加上24小时气压变化,美国对热带的天气还重新分为几类,拟了新电码,(专用,是科学家提出的),东亚为何没必要?实际上西藏高原上的观测是已自发的改了教条式的雷雨云定义(上部冰晶化)改变了报云的电码!1950年时我国天气分析基本上仍照挪威学派的方法办事,当时针对这问题,大大的用力指出挪威学派的方法的局限性,要按我们天气实际情况来分析,不是硬套几个阶段,几个模式。经过了四、五年挪威派影响算基本上不硬套了。观测则没有经过这一阶段。当时硬抄苏联,而苏联的天气观测及预报分析方法完全抄挪威派的(请了挪威派专家去了几次,前后二、三年)。
以西藏高原影响问题为例,地形对天气有影响大家知道,大地形如落矶山对天气有影响,影响至槽的形成当时也已有理论研究,但是西藏高原如此大的高原该有更大影响,却很少有人注意,叶笃正首先注意了这问题,把大地形影响的问题具体到西藏高原来考虑!指出了我国高空气流的某些特点与此有关,这是与中国具体天气结合了起来。另一方面,1950年联合天气中心成立后不久在中国天气预报实践里就发现中国天气的好些特点,低压在中国陆上很不容易发展(东北除外),上游(西边)也很少深而强的天气系统进来等等,而地面上的具体天气也有着相应的特点(一般变化慢,少,静止锋多,持久),可以联系到西藏高原的影响来了解。这样,可以对了解中国天气形成的规律有帮助。作为总的背景。这是提炼出来的问题,具体的某一个天气系统的发展则还不能研究,因为当时资料远为不够。但西藏高原影响问题看来虽是一般大地形影响原理用到中国来,实际上我们从中国天气各方面来研究了这问题,联系到地面天气,联系到中国整个和各地区的特征,联系中国天气系统发展,联系到气候形成理论,结果问题内容就充实了许多。同时高由禧同志把它扩充,把高原作为冷热源,朱抱真同志又反过来再从动力理论上把大地形影响的理论推广成地形与冷热源对高空平均流场形成理论。这样,问题就从原来的一般原理又回来扩充和充实了原来原理,水平也大大提高一步。可以说在解决中国天气实践过程中及基础上又提高丰富了气象学的一般原理。所以以研究中国天气为中心、西藏高原影响为中心,我们在1957年总结解放后对东亚大气环流的研究写成连载三期的长文(瑞典Tellus杂志发表,应邀去开会时报告用,所务会议通过同意)时国际上都很注意,至今沿用引用。到去年访问日本时,他们还问起现在进一步作得如何了。可见把气象学一般原理结合中国天气实际,不但可以解决了中国实际天气,又可提高总结,回过来丰富气象学。这是完全应该和可以做到的。
然而1950-51年时自己也另一方面想找找西欧所见的天气系统,如快跑型气旋之类。这方面自然不是正确方向,虽然因为在中国也找不到,只用西欧材料分析了一个西欧的例子,搁下不做了,也没发表,但可以看出,自己也不是完全明确自觉的,还想作一些不需要而熟悉的工作。
从天气预报实践来说,1950-55年在联合中心作预报,当时的任务在建立天气图方法的预报技术。1955以后我们还要加强它,但我们回到科学院后应该注意更长远一些的问题。当时数值天气预报在国外已在作"中间工厂试验"。看来比1949年我在国外时的情况更有苗头,这是一个天气预报工作的方向问题。当时我们的预报单位还顾不到,但我们得搞起来。另一方面,数值预报把原先难于验证的天气动力理论结果,通过计算,成为可以验证的。在这里又必然大大的推动天气动力理论发展,它不但加速了天气动力学理论回到天气实践的工作,并且在数值天气预报中又发现许多本来不注意的新问题,例如超长波问题,因此又促进了天气动力学的发展。所以,那时就应该开展数值预报的研究。非但能直接帮助我国天气预报的进一步提高,并且也能促动天气动力学的发展。这目前对它重视还不够。
从中国实际出发也可以用云滴生长的起伏理论作例子。从1959年起我们就在黄山观测云雾。60年起又在南岳再建了一个云雾观测站。我们发现山上云雾笼罩时往往看到云忽浓忽淡起伏很大,风大时尤其明显。不刮风不下雨时不明显。60年秋天专门组织了观测证明云中水滴的确忽多忽少,有起伏,远不是均匀的。到61年我们又观测盐核(形成云滴的基础、核心)发现盐核也是忽浓忽淡,并非均匀的。所有这些现象在外国文献中基本没有人注意。事后查到少量资料也没有人着重指出来它的重要性。而我们认为这些事实很重要。因为,从理论上讲,这牵涉到许多问题,比如说牵涉到盐核来源,云滴生长等等问题。那时我们通过中国人工降水自己的实际,正着重搞暖的云(温度0℃以上云,一般理论不能很好解释暖云中如何能形成雨滴)如何会降雨。但门道不多,理论水平还差,才开始研究。但在61年底看到周秀骥告诉Беляев而由后者径自发表的云滴起伏凝结增长的论文时,(因而)就能认识到这个特殊处理方法的重要性。我们由自己的工作就体会到云中确有起伏。因此我们就用同样方法来处理更为重要的云滴碰并的问题。作了一些研究。此外也作了另一些同类问题(暖云中水滴长大,出现大水滴)的理论研究(李麦村的对流云泡降水,章光锟的平衡谱)。到第三年,1962年我们就进一步观测云中水滴浓度起伏,进一步证明起伏量的大小。也在观测中找出云的起伏与云中水滴大小的关系,可以间接支持起伏生长理论。在这里面问题的提炼是先发现中国云雾的一些特殊现象。认识它的原则意义,又从自己的这实践体会从别的角度即自己的角度来研究中国提出的基本问题,而提出自己的理论,来丰富一般,普遍的规律。
前面所说的云滴分布第二极大问题也是这个意思,人们在实践之前往往不承认特殊性,只见一般性,海洋学家在海底仔细探查之前总以为海底是平的,实际探查后才发现海底起伏比陆上还大得多。又如,以为湾流(gulf stream)是一股均匀的海流,仔细调查后才发现还有分支,还有蜿蜒曲折,中间一股流速又极快,都比想象的差别性大得多。天气上本以为高空是一样的西风,实践后才发现有风急流,又细又强。所以对我们来说,问题就在中国天气实际中发现特点,发现差异,并再提高认识。
我们已经谈到特殊性与一般性的问题。以锋面为例,锋面既然没有很经常的出现,以致大气温度向上[递减]变化的平均情况来说,往往[锋面的]一些影子也没有,又有什么重要性呢?这里就要有理论的指导。锋面这个个别性重要,因为它是冷暖两空气[团]之间的很清楚的界限、接口。在别的地方冷暖气[团]的界限没有如此清楚。换句话说,矛盾没有如此集中、尖锐。锋面上冷暖空气的对比明显,产生了一个重大的后果即冷空气与暖空气在锋上往往是不平衡的,冷的要下沉,暖的[轻]要上浮。这样,冷暖空气就要重新排列而释放位能,因而大大增加大气的动能,天气就大为变化。所以在理论上是十分重要的,大气运动靠它维持。没有这理论上的认识,又没敢承认特殊性,这现象就要被放过。事实上,英国著名气象学家Shaw就轻轻放过了它。(预报员们到现在还放过不少重要现象!)
我在1957年研究锋面时情况也类似。锋面是冷暖气[团]的界面,冷是冷,暖是暖,因此40年来一直认为锋面是一个物质面,即永远由同一批质点组成,不会改变,不然不成其为冷暖空气的界面了。人们承认冷暖空气会互相变化,但在锋面上就不承认它们的变化。其论点主要由所谓的剖面图上的保守量来证明,即用南北方向上(或其它方向),从上到下给大气切开来,看看它的冷暖空气分布,温度构造。而用的是所谓"相当位置温度",它是一个"保守量",尽管发生凝结,发生上下运动,这个量保持不变,可用来识别冷暖空气。这已成为日常锋面分析方法的核心。实际上,这种图不能搞清锋的演变。因为锋面每天在移动,同一地理位置上的剖面中,即使保守量分布类似也不能说明锋面的全面演变。为了了解锋面的数值预报处理方法,我与数值预报小组同志分析了这种保守量沿锋面的"水平"方向分布,看它究竟是否均匀,是否每天有变化,变化又有多大。研究是中国寒潮南下时的冷锋(冷空气推向暖空气的前锋)。结果发现锋面上不但这保守量不是同一数值,空间分布并不均匀,并且时间上也很快变化。由此具体了解到,锋面上的保守量其实天天在变,可见锋面不是物质面,锋面是不断发展的,是不断产生加强,又不断消灭、削弱的。这与过去的锋面概念十分不同,(过去是某地生锋,然后不变地移动,到末了忽然锋消)。这也表明冷空气暖空气即使在锋面上也是不断在转化的,不是互不来往的。暖空气会变成冷空气,冷空气也会变成暖空气。所以锋面也不可能是物质面。这问题中分析的是几个例子,但从理论上看这问题十分有意思,所以经过仔细分析,现象可靠,从理论识别,这是关键性的。这个锋面研究,国内外天气动力工作者不大提到,我自己则认为还是一个重要问题。要强调的还是理论上的认识,看出它的重要性。而这一点,又要认识锋面作为物质面的重要性何在,即原来的锋面本质上重要性是什么,否则管你什么物质面不物质面,稀里胡涂一笔勾过去(画天气图)什么也没有问题,结果什么问题也看不出来。特殊性固然看不出来,一般性其实也不了解。预报员天天接触具体天气,特殊的天气,但苦于搞不出好办法,主要原因还是不会总结好。而这又与理论修养不够有关,所以我是主张预报员是应该好好学学动力气象拿来结合天气问题,拿来用的(作为武器)。但过去据说一看动力气象就归之为脱离实际,大家不敢看,现在好一些,也还不够。天气动力学理论脱离实际好办,结合就是了,没有天气动力学理论或者把它丢掉,那才是更大的错误。以学毛选为例,只有批评学毛选不联系实际,那有因而丢掉毛选的事呢。当然业务繁重有它自己具体事情和做法。
所以说提炼问题还得有理论水平。首先是大量天气实践中了解重要的问题:对象是什么,然后分析典型的例子(已有普查基础),分析典型例子中的典型过程,找出关键,认识关键,还得有理论原则的指导。当然这原则是大原则(锋面是否物质面很重要),在这指导下搞出新的原则(锋面不是物质面),不是证明证明老规律。在锋面分析中不是证明锋面是物质面。在西藏高原影响问题则是首先了解中国天气的许多特点,也了解大地形一般对高空环流有影响(指导),说明的不只西藏高原对中国高空环流有影响而还对地面的许多中国天气特征、气候特征有重大影响,这就成中国天气上的一个新的原则了。
3、新概念、新方法的引入、结合。在这方面,气象学上为什么还值得强调呢,因为气象上一向是最差,国内差,国际上也不妙。气象学是一门比较落后的科学,一方面是难,更主要方面是到底不是直接生产,直接服务国防,终是第二位的事。与天文学来比,气象学与天文学都是古老的科学,而且各国从事天文的人,天文研究上花的钱不会比气象更多,但天文学上新技术、新方法的引进就一向比气象好多了。例如,无线电技术60年前开始搞天文上早就用上。而气象上直到1940年后才实际用上,至少落后20年。天文上用的主要仪器也远比气象上的主要仪器高级许多,技术水准差好远。现在已用Maser多年,气象上还没有这类仪器(国际上)。天文上早在牛顿,Laplace时代就引了数学上的最新成就,许多数学发展来自天文问题,而气象学到1950年后才在日常研究中用上数值解法,椭圆型偏微分方程等等,相形之下,实在落后多年了。至于国内更差。解放前不用说新技术,老技术也不会,气象仪器只会买不会拆修,也不会检定。气象理论则几乎没有动力学的研究。能引用流体力学方法的也极少。解放后在技术上能会检定、拆修,但高级一些的像微气压计,阴天测风都还没自造自用,更不必说雷达,实验气象学基本空白。理论上赶上了国外,但国外基本上到运用偏微分方程数值积分为止,我们基本上也未突破。所以要有新方法、新工具的引入有特别强调的必要。把气象学上一般的日常工作情况总结一下可以说是:19世纪的仪器(水银温度表,水银气压表,甚至风标,已比19世纪还古。好一些的是温度等自记计(钟表装置!),是上世纪的东西,气压自记计1862年,雨量自记1869,湿球温度表测湿度是1880-1890间搞起的)。20世纪初期的理论(二阶二维偏微分方程(非混合型)为主是Richmann, Dirichlet,时代的东西,但20世纪的计算数学及技术以及数学分析方面,用了不少。),21世纪的问题和要求(例如人工控制天气,又是100%的预报准确率)。矛盾很大。
以观测来说,不用说别的,光是观测布局就是一大问题。像气象那样所牵涉的是三维场的问题即大气整个空间(离地小于100公里)中的各种物理性质分布,然而观测从来是逐点的,没有面的观测,更没有立体的观测。所以测到的是各个地点的天气,联不起来,漏洞很多。用了雷达及气象卫星后情况大有不同,但是最主要的气流场仍不能测到,雷达则国内还极少,卫星则才开始经常化。(顺便提到,现在美国气象卫星天气观测狠抓我国全境天气情况包括云、温度,并可看出天气系统,实际上在我国西部如西藏青海,美国对这些地方天气已了解得比我们自己更清楚!)。
但新方法等的引入也不是随便引的,这里也有讲究。气象动力理论方面有个Ertel(民主德国前科学院副院长),他从不看天气图,从不参加天气实践,只凭数学物理知识,拿了一个小本子,到散步时�"灵感"就记下来,搬用数学物理上的一些方法,如"推迟势"(电动力学上搬来)"奇异平流"等等。但计算了一大堆,站住脚的很少,经不起考验。因为他主观地认为气象学目前方法已不行,但实际情况、实际问题是什么,不知道,旧的方法对解决实际问题有什么不足,也不知道,引用新方法自然也是主观硬搬,二次大战前日本也有这类学者。这样谈不到解决问题,更谈不到融合。
另一方面,一般在实验气象或气象技术上发展了无线电子或者无线电气候。看起来无线电与气象融合起来了。实际上都是用气象资料天气条件说明无线电波传播情况或者天电干扰,基本上是无线电,至少是与天气预报无关。这样也谈不到融合,而只是应用气象观测结果。
我所说的引入新方法、新观点、新理论、新技术等等都是为了解决气象本身的问题,发展气象学,有问题、有目的。如果对气象上有什么问题不了解,想解决什么问题不明确,提什么问题也提不出,那末引入新技术、新观点理论等等也会落空。有人用了泛函分析证明的是冷空气总要下沉,这也是常识,不成问题,引用了也改变不了什么面貌,引不引都一样。
我在1949-50年时就对控制论有兴趣,那时翻了一下维纳新出的"控制论",那学科建立的过程特别有兴趣。但回国后工作很忙,一直到钱学森的书"工程控制论"出版才又看控制论。当时感到控制论上所要解决的问题(已有问题要解决!)与数值预报上天气模型的设计问题很相像。在数值预报中一定要把实际天气过程简化,形成一个天气模型或模式,否则天气过于复杂,无法计算。而天气模式的设计一定要用几个简单的天气过程、因子配合使模式所表现的天气与指定天气实践过程的几种重要性质符合。 这问题显然与工程控制论中用已给定的"组件"设计自动控制系统的问题很相像。因此,可以引用。不但如此,推而广之,天气实际过程又何尝不可看成一个自行调整的系统呢?大气环流也罢,天气变化也罢,都不妨看成自动调整的过程或这些过程的结果。 因为大气环流过去大都由一个环节解释另一环节,把整个环节互相制约的看法不多。有好多问题包括长期预报中长期过程性质(线性还是非线性等等)谈不清。引用了自动控制的概念后,对大气整个变化可以统一的了解,可以用很简单的方法研究、了解长期天气过程的性质解决了一些问题。并且也对数值预报线性模式的设计也提出了非常简单的办法,效率大大提高了。实际上,这问题实际动手做也是为了解决后一问题。1958年10月所里用一个线性模式作一个月的长期预报,花了大约相当于100人工作一个月的人力,结果模式设计不当,[失败]了。但事前没法知道设计好不好,好不好仍是得实际算出来看。用了控制论的办法后根本不用实际计算出来,只要一个人花上几小时就可估计出来了。如果花上几天还可以了解如何选择参数更好。所以线性长期预报模式的问题基本上解决了。这工作就是"大气控制观"一文的基本内容。(之后陈雄山接下去又研究了一个时期)。它还是把控制论的观点方法与天气动力学结合了的。如果有意义,也在于此。1959年[我]去苏联时曾在苏报告。苏联Кибeль院士认为不过用了一下数学上的Laplace变换。这是只见技术不见概念,自动调整理论还不是用Laplace变换?但意义远不在于用一个数学技术。当然,目前"大气控制论"还很有局限。因为大气过程是三维的,而自动控制中没出现三维场的问题,所以没有现成技术可搬用,进一步就还要自己花力气搞。
同样,丑纪范同志(中央气象局)研究数值预报过去与我一起搞,引用了泛函数论,数学物理中直接方法等技术,解决了把预报员惯用的着重最近几天天气演变的天气图方法与作为初值问题的一般数值预报方法相结合的问题,也是已有这问题的概念,然后想到了引入泛函方法的,因此是有目的地引入的,而最后则打开一条新道路,可以说丢开了1904年以来数值预报理论的提法,搞出了中国的数值预报方法。这方法如果发表一定会很受注意,但我们还不发表,因为会被他们利用,对他们太有利(我们还没气象专用电子计算机只能用这方法试报,还没有大规模用这方法解决日常问题阶段)。
再说,射电气象(我们目前在开始的)。射电气象不是标新立异,而确与无线电气象有区别。因为从来的无线电气象(不是雷达气象)顶多用无电来定雷雨位置,此外就不搞什么气象问题。虽说边缘科学,其实并没有形成杂交的新科学。我们的问题是要研究雷雨云中的前后过程,又很难进云去直接观测,就要求新的方法来搞。另一方面雷雨云形成前后本来就有不同�"天电",干扰无线电通信。从大气物理上来说,这些不同的天电必然反应不同的过程和机制。如果我们测定不同频带的这种雷雨云射电,我们就有可能了解雷雨云的性质、过程、阶段等等,更不用说进一步改进找寻雷雨、侦察定位帮助航空了(航空上很迫切)。推广来说,大气中气象射电源很多,不只雷雨云,研究它们的频谱和变化来了解大气过程(这是气象问题!)可以搞出一个新的方向,在方法上也是新的,这便是射电气象。我想这样无线电与气象也进一步融合了,而且还是气象。这不是装饰而是研究雷雨、雷雨云所必不可少的。周秀骥把大气电学推陈出新方面,有许多例子可说明这类问题。
引进新概念、新方法与开阔新领域是分不开的。这里面自然也有许多矛盾。自己就有矛盾。转搞一个新东西,不论多快,总有一段摸索时间,一段摸底了解当前情况的时间,总不如搞原来的成果更多。1955转搞数值预报,1959年搞云雾物理,去年开始搞雷雨云射电气象时都是有一段时期简直是十分狼狈的。方向尽管定了,问题不熟,要看的东西一大堆,头绪又没有,主要问题何在说不清,不少同志等着,也有不少年轻同志又显然比自己搞得更快。自己工作自己也见不到成绩。又着急,又费劲。但�"义无反顾"。好比打仗,目标在占泰山顶。好容易打到了南天门以为到了,结果发现玉皇顶更高,得占玉皇顶。如果不去攻玉皇顶,死守南天门,结果南天门也要丢掉。南天门还得有人守,玉皇顶还要有人去攻。问题就是如此。
4、综合的搞气象问题。什么问题都是有多方面,有各种联系的,气象问题也是如此。气象上有各个分支,并非大气现象就都只有一种过程而为了(理论上的)方便,深入,每个分支研究它的一面,它许多过程中的某一类。气象上的实际情况恰恰是割裂严重。首先预报员坚持天气图方法、天气学,很少管动力气象的许多成果,而动力工作者甚至不看天气图,没有任何预报实践经验。苏联最明显,动力气象学家说天气学没前途。大气物理也与天气不沾边,天气工作上最多用用雷达,用天电定定雷雨的位置,而很多大气物理学家最后只有物理,忘了大气,这在苏联也最严重。气象上苏联较差这是原因之一。实际上考察一下气象发展历史便可以看出,只有在实际需要推动下综合地搞的时期,发展才快。现代(20世纪)天气动力学上二次革命变化都是天气学与动力学乃至气候学、数学综合地参与了研究的结果。首先是挪威学派(1919开始)。挪威学派进展快,因为挪威不但在包围下农业对天气预报的特殊需要,并且是V. Bjerknes带领一批年青人,敢于创造性地从事天气预报实际,又从动力理论上来搞它(V. Bjerknes本人是物理学家,特别是流体力学家)。第二次是Rossby等发现行星波也是从天气学、动力气象乃至气候学结合起来搞清楚的。
我国气象工作在解放前一直是各搞各的。那一门不管另一门的事。解放后天气学与动力气象学结合了一步,但还不够。不够之处在于天气工作者的动力气象学的修养、概念、观点、方法不熟,而动力方面对中国天气实践太少。以地球物理所而论,从事动力气象研究的都没有作过实际预报,不知预报关键问题何在,研究问题多从物理过程考虑出发,对总结提高并不太有利。气候方面更严重,气候工作者对动力气象很少去管它,也不管别的许多方面。结果气候学一直搞得不够有声有色。近年来,气候学各个题目或小分支气候变迁,气候统计是有人注意了,但是尽管长期变迁就要用统计研究等等,这几个分支之间就没有联系(起来),不用说别的。互不学习,互抱一角,"互不侵犯"。一谈方向,谁都认为自己研究问题是方向。因此看来是百花齐放,但没做到推陈出新。与大气物理联系更少。大气物理着重野外观测,着重试验分析,对误差很注意,而天气学及气候学的研究很少谈资料及计算误差,既不问有效数字,也不问可靠到什么地步,这在国内尤其如此。许多结论就不可靠。学报审查天气学、气候学来稿时这问题最头痛。这些都没互相学,不用说渗透了。大跃进中二室8抓住阻塞高压,全组动手从各个角度来抓这问题,是一个创举,效果不错。但这一优点被遗忘或没被重视了一个时期, 到今年才又打算在中期预报问题上再组织综合性的研究。这上次材料中已谈到。
中小尺度天气,过去搞了十年甚至用了雷达,搞来搞去无非分析一个气压场,画出几个小低压,小高压,费劲极大,分析一个例子动辄几个月,但一直没有从动力气象角度配合一下究竟该抓什么,如何揭发它发生发展规律,而只解决一个次生现象的存在不存在的问题。这样作自然是少慢差费9的。我们现在打算把这问题由雷雨物理、雷雨云研究,中小尺度动力学包括积云动力学一起研究,可以速度快得多。有的同志(天气方面,地球所及气象局,南大)见到国外搞中尺度分析急于模仿,照样干一套。其实一样不能解决问题。他们搞十年都没解决,我们抄这一套一定也不行。我们现在是走自己的路,综合地来搞。
5、提法的正确,更好的解释研究结果。还是举一个例子。1951年我研究西北低槽,陶诗言同志很有兴趣,接下去研究这问题,研究完毕写成论文给我看,原来选的是产生西北低槽的大形势转成寒潮南下的形势,其中牵连着很重要的阻寒形势的崩溃过程。实际上已是东亚寒潮爆发这样更重大的问题,而且东亚寒潮的研究过去多就事论事,描写一番,究竟又如何爆发,大形势上有何变化,高空大范围的环流有何改变,一概不明白。因此陶诗言同志这篇论文开阔了从现代天气学角度研究东亚寒潮爆发的先河,也是国际上从这角度研究寒潮的创举,对天气预报十分重要。若是作为西北低槽如何结束来说显然不足,因为西北低槽解决一个天气分析方法,槽的存在来源问题,比起寒潮发展来还是小问题。所以我建议把这论文题目改成"东亚寒潮爆发前后大范围流型转变研究"(大意如此)。之后我国寒潮许多研究从这条线作下去,也影响到别的重要天气的研究。所以提法、解释研究结果还是很重要的。国外文献上也有好多研究结果作者并不充分知道它的意义的。例如测到了雷雨云在发展初期就发生了天电"干扰",但不能看出它的气象上的重要意义,只作为干扰。测到了盐核浓度的变化看出它反应了盐核发生发展机制上的重大差异,只作为一般现象描述一下,是不够的。
当然,也有一些提[法]太夸大。界限是在是否足以说明问题,能解释什么问题,是否勉强,是否反映了它的本质。还没把握搞不清时不硬扯。
6、简化问题。气象上有一些人专门把问题搞得主次不清,眉毛胡子一把抓,而自己也不知道抓到的是什么,物理意义何在。问问他,他会说物理意义不知道,或者说物理意义是算好了以后按上去的。甚至非天气学也是如此,计算的理论结果实际上繁琐到无法实际使用,而天气分类等等也名目繁多,主要之点淹没无余。苏联气象许多方面,像近地面物理等等也常常如此。又像Richardson首先努力于把天气数值预报工作具体化.为此写出一大本厚书,而始终没解决这问题。其主要原因也是把树叶反光到大洋影响(等)无所不包,最后形式上列出了算式实际上必然算不出。很多气象大师的本领在于把本问题看透,看清本质,把最主要的矛盾(或因子)抓住,数学也简单,而问题搞清了,肯定了。进一步作什么,进一步把它精确化的工作也可以看出值得作了。Rossby的一些主要工作也简化得不错。但仔细看看他年轻时的工作,并不是如此的,他搞大气湍流时还有一些相当繁琐的东西,后来搞涡旋时,搞急流时又有烦琐的,主要是问题没搞清,没抓到,而硬要按上,就不好了。
简化是否草率。这要看是否解决了问题。没掌握最主要的因子会形成草率,例如雷雨飑线突变,显然是非线性现象。如果简化成线性问题只会变成草率甚至牛头不对马嘴。把高低压移动化成质点力学问题或运动学问题也会流于失败。核心把握了才能真达到简化的目的。叶先生是很能简化问题的。
简化与全面搞并不矛盾,前者为后者开路,先简化搞有苗头,再进一步多考虑更复杂的,效率更高。数值预报由复杂到简单,现在又已很复杂。看来又得经过简化(长期过程本质),这是辩证的,不是机械对立的。
附:顾震潮先生的字体极具特色,很难辨识。由手稿录入成文档,是件非常艰难的工作。对于个别难以辨识的字,经过顾震潮先生的好友和与顾先生共事的同志多次辨识和校验判读,才使得顾先生的手稿和大家见面。
录入:谢丽娟,雷恒池。
校验:周桂棣,沈志来,魏 重,任丽新,吕达仁,周晓平 |
|