导航中医药
标题:
第25篇 还原论在20世纪的进一步发展
[打印本页]
作者:
杨鸿智
时间:
2004-11-19 22:12
标题:
第25篇 还原论在20世纪的进一步发展
第25篇 还原论在20世纪的进一步发展
第25篇 现代医学的自然科学基础(5)— 还原论在20世纪的进一步发展
作者:
中国医药信息学会北京分会后现代理论医学专业委员会主任委员杨鸿智
1808年,英国的道尔顿首次提出了科学的原子论学说。但这时的原子论认为原子是物质的最终的不可再分的单元。这种观点被后来的事实证明是不对的。19世纪末,德国物理学家伦琴在研究阴极射线的实验中发现了X射线,法国的贝克勒尔发现了铀的放射性,更重要的是1897年,汤姆逊发现了电子的存在,原子不可分的观念开始动摇了。关于原子内部结构的奥秘这一科学问题又重新引起了人们强烈的兴趣。电子的发现使人们普遍认识到带负电荷的电子是一切原子的基本组成部分。而通常情况下原子呈现电中性的事实,表明原子中还有与电子电荷等量的正电荷。所以,研究原子结构首先又要解决原子中正负电荷如何分布这一科学问题。1903年底,日本的长冈太郎提出一个“土星型”模型。但是,他的论证得不到实验的证明。1904年,电子的发现者汤姆逊提出了第一个比较有影响的原子结构模型。他根据化学性质的周期性,反复推敲出一个“面包夹葡萄干”模型。他设想,原子中正电荷以均匀的密度连续地分布在整个原子球中,电子则在正电荷与电子间的辐辏力以及电子间的斥力的作用下浮游在球内。犹如一个圆砚里面嵌着葡萄干。汤姆逊对原子结构的认识还有一个重要贡献,即他给出了电子数目的公式。汤姆逊做了一些模拟实验,似乎可以用这个模型来解释元素的周期律,于是,这个模型在当时广为人知。但是,事实上,汤姆逊的模型是自相矛盾的。他在模型中给予正电荷电原子内部以连续分布的形式,而给予负电荷以粒子的形式的分布。这样,原子的稳定性用库仑定律解释不了。因此,“面包夹葡萄干”模型便又埋下了新的科学问题的“种子”。汤姆逊的学生卢瑟福(1871-1937)开始也相信汤姆逊的模型。但是,卢瑟福在1910年指导其助手研究α粒子的性质时却发现了意料不到的新事实,实验的结果与汤姆逊的模型发生矛盾。出于对科学真理的追求,卢瑟福毅然抛开师生的情面,直言不讳地对汤姆逊模型提出了怀疑和挑战,并努力通过实验寻求真正的科学理论。在随后的一次试验中,卢瑟福发现发射出去的α粒子,有99.99%顺利穿透金箔,而0.001%(万分之一)发生了“散射”现象,卢瑟福认为,带正电的α粒子碰到原子时的散射,只能用原子中有一个虽微小而质量却很大的带正电的核的斥力来解释。他经过计算,在1911年得出结论:在原子中有一个直径约为100-12cm的核,这个核的体积只有整个原子的一百万亿分之一,但它却集中了整个原子质量的99.99%。电子绕原子核旋转,就好象地球绕太阳运行。这就是卢瑟福建立的原子有核模型,或叫做原子结构的行星模型。解恩泽《科学问题集》P152-153
1 中子、质子的发现
如果原子有核,那么原子核是由什么构成的呢?由于原子表现出电中性,它一定是带正电的,其带电量与核电子所带负电量一样。1914年,卢瑟福用阴极射线轰击氢,结果使氢原子的电子被打掉,变成了带正电的阳离子,它实际上就是氢的原子核。卢瑟福推测,它就是人们从前所发现的与阴极射线相对的阳极射线,它的电荷量为一个单位,质量也为一个单位,卢瑟福将这命名为质子。发现了电子和质子之后,人们一开始猜测原子由电子和质子组成。但卢瑟福的学生莫塞莱(1887-1915)注意到,原子核所带正电数与原子序数相等,但原子量却比原子序数大,这说明,如果原子光由质子和电子组成,它的质量将是不够的,因为电子的质量相比起来可以忽略不计。基于此,卢瑟福早在1920年就猜测可能还有一种电中性的粒子存在。德国物理学家波特1928年用α粒子轰击原子核得到一种电中性的穿透力极强的射线。法国的约里奥——居里夫妇证实了这一发现,但他们都认为是一种r射线。1932年,卢瑟福的学生查德威克重复上述实验,并且新产生的射线去轰击氢原子和氦原子。结果身线可以将氢核或或氦核打出。由此,他断定这种射线不能是r射线。因为任何能够从原子里打出质子来的辐射,都必须由一些本身就相当重的粒子所构成。r射线的静止质量为零,因此,根本就没有将质子从原子里打出所需要的动量。他计算出这种粒子的质量与质子相同,因呈电中性,故命名为“中子”。
吴国盛《科学的历程》P760-762
2 基本粒子群的发现与夸克模型
20世纪30年代初,构成原子以及在原子层次上活跃的那些微小粒子只有电子、质子、中子和光子几个。人们称它们为“基因粒子”。但是,没过多久,先是在宇宙线中,后是在高能加速器中,发现了一大批基因粒子。到目前为止,比较稳定,寿命长的基本粒子有三十多个(60多个),而那些不太稳定、寿命较短的基本粒子则有400多个。最先发现的是正电子,正电子的发现启示人们,是否所有的粒子均有反粒子。结果发现,确实几乎所有的粒子都有原粒子。第二面重要的发现是中粒子,60年代以后,由于加速器功能的改进,几乎每年都有新的料子被发现。由于粒子的数量不断增多,就需要对它们进行分类认识,看彼此之间有什么关系,就象用元素周期表示对元素进行分类一样。为此,1916年,美国的盖洋曼提出了一个“夸克”模型,也就相当于基本粒子的“周期表”,目前该模型已被实验证实,为此,他获得1969年的诺贝尔奖。
3 “弦”理论
在研究基本粒子的过程中,科学家们发现在两个基本粒子之间总是存在相互作用,可以想象,这种相互作用产生的束缚就好比是连接在粒子之间的橡皮筋。当粒子运动起来时,粒子之间的相互作用就象一根扭转的弦。这种情况,在有能力掌握粒子运动状态时,并不重要而如果对粒子本身尚不能掌握(如未发现),那么,用粒子之间相互作用的“弦”来间接反映粒子的状况就十分重要。如海王星和冥王星的发现,当初我们并不知道这两颗星的存在,但是,因为我们发现了这两颗星与其他行星之间相互作用的引力,通过这个引力,我们反过来找到了这个引力的来源——新的行星。科学家将基本粒子之间的作用关系命名为“弦”,这实际上是一种“作用关系”,在实验中,这表现为一些数学运算和数学推理。也就是说当我们尚无手段可以确切掌握一些粒子的运动状态时,我们可以通过这些粒子之间的相互作用关系而间接地感觉到它的存在,这就扩大了人类认识的范围,丰富了人类认识物质的方法,为此,1996年8月22日,中国的《人民日报》和《光明日报》发表文章指出,美国科学家认为,物理学迎来了第三次革命。
欢迎光临 导航中医药 (http://gtcm.info/)
Powered by Discuz! X3.4